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Abstract Photosynthesis, chlorophyll fluorescence, and

hyperspectral reflectance were used to evaluate diurnal

changes of Elaeagnus umbellata to quantify physiological

responses of the invasive species during times of stress.

Field measurements showed that E. umbellata is able to

maintain higher levels of photosynthesis relative to nearby

Quercus alba plants, with less water loss. Plants subjected

to progressive drought were able to recover photosynthesis

one day following re-watering. Laboratory and field mea-

surements revealed decreasing DF/F0m values in response

to drought stress, with little corresponding decrease in

photochemical reflectance index values. This research

supports the view that xanthophyll cycle dissipation is not

the photoprotective mechanism at work for Elaeagnus

species under water stress. Elaeagnus umbellata maintains

photosynthetic carbon assimilation even under drought

conditions, in part, due to chemical dissipation of excess

light, and in part because of morphological features that

limit excess radiation while maximizing photosynthetic

carbon gain. These characteristics may contribute to the

invasive success of E. umbellata.

Keywords Elaeagnus � PRI � Fluorescence �
Photosynthesis � Chlorophyll � Drought stress

Introduction

A host of theories exists to explain the mechanisms of

biological invasions, as well as the negative consequences

to the invaded communities (Hufbauer and Torchin 2007).

Much of the current literature is concerned with competi-

tive exclusion of native species, although few studied

invasions lead to native exclusion across a community

(Bruno et al. 2005); therefore, arrival and establishment of

an exotic depend upon resource availability in the presence

of natives. Following arrival and exploitation of resources,

if an environment provides the opportunity for the invading

plant to increase its density, growth rate, dispersal success,

or reproductive rate, the alien may expand aggressively at

the expense of the local community (Hufbauer and Torchin

2007). Physiological and morphological traits of plants

may help explain invasive success in a particular system as

they are related to growth and resource utilization (Baruch

and Goldstein 1999). Higher photosynthetic rates reflect

the potential of a species to accumulate more biomass, thus

depleting local resources and likely shading out native

competitors. Research focused on understanding the

mechanisms with which invasive species are able to

succeed could potentially help prevent future invasions

(Baruch and Goldstein 1999).

Elaeagnus umbellata Thunb. (Elaeagnaceae) is a

deciduous, drought resistant invasive woody species that

forms extensive, dense thickets. Commonly, it is a large

multiple-stem shrub, rarely treelike with a single trunk,

reaching a maximum height of five to six meters. Leaves

are elliptic with entire margins, having sparse stellate

trichomes on adaxial surfaces, and a dense covering of

peltate trichomes on abaxial surfaces. Elaeagnus umbellata

is native to coarse-textured, moderately or well-drained

soils of Asia (Ahmad et al. 2006), but was introduced to
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North America as an ornamental shrub and has spread from

cultivation in the mid- and eastern United States (Ebinger

and Lehnen 1981). While many introduced species tend to

establish and thrive in edge areas and fragmented forests

(Benı́tez-Malvido and Martı́nez-Ramos 2002), E. umbel-

lata also succeeds in the understory of pre-existing forests

(Yates et al. 2004). In addition, it readily colonizes dis-

turbed areas or poor-quality soil where its association with

Frankia, a nitrogen-fixing endosymbiont, may confer a

unique advantage over other local species (Yates et al.

2004). Elaeagnus umbellata produces large quantities of

small fleshy drupes, which are consumed by birds and may

be dispersed in great numbers over large distances (Suthers

et al. 2000; Ahmad et al. 2006). As a result, E. umbellata is

often found to be rapidly expanding into nonnative habitat

(Yates et al. 2004).

Many studies have reported on the invasiveness of

Elaeagnus species in various systems and have discussed

the threat to ecological functioning of those systems once

well established (Nestleroad et al. 1987; Katz and Shafroth

2003; Yates et al. 2004), but research investigating the

physiology of the species, especially in areas where it is

considered invasive, remains limited (Gong et al. 2006;

Zhao et al. 2007). Research into physiological responses

during times of stress may facilitate the understanding of

how species are able to successfully invade new systems.

The photosynthetic efficiency of many plants decreases

under conditions of stress (Chaves et al. 2002) and many

mechanisms have evolved in response including photo-

respiration, detoxification of photosynthetically produced

reactive molecules and the water–water cycle (Demmig-

Adams and Adams 1992; Flexas and Medrano 2002; Apel

and Hirt 2004). Despite the many pathways for excess

energy dissipation, a large body of literature supports the

role of xanthophyll-mediated photoprotection under con-

ditions of natural stress, especially water stress (Demmig-

Adams and Adams 1996; Flexas et al. 2002; Winkel et al.

2002; Evain et al. 2004). Changes in the de-epoxidation

state of carotenoid pigments of the xanthophyll cycle, and

subsequent accumulation of zeaxanthin are reflected by

absorbance changes centered near 531–535 nm and indi-

rectly measured via the Photochemical Reflectance Index

(PRI; Bilger et al. 1989; Gamon et al. 1992; Ruban et al.

1993). This study explores the physiological characteristics

of E. umbellata throughout the growing season and during

drought in both the laboratory and field. Our goals were (1)

to quantify seasonal and diurnal changes in plant physio-

logical status in field conditions and (2) to quantify changes

in physiology under progressive drought conditions and

after re-watering in a controlled laboratory experiment. In

addition to traditional physiological measurements, we

used remote sensing detection to infer xanthophyll cycle

changes as a possible mechanism for excess energy dissi-

pation during times of stress.

Materials and methods

Study site and plant material

The field portion of this study was conducted at Fort A.P.

Hill, Virginia (38� 5.6020 N, 77� 20.0750 W) from May to

August 2008 where the expansion of E. umbellata has

occurred over many years. The climate is temperate with

maximum summer temperatures ranging from 28 to 31�C

and an average rainfall of 1,131 mm per year. Elaeagnus

umbellata thickets primarily occur along roadsides at Fort

A.P. Hill, although the species is expanding at forest edges

and in old fields, and we have observed it in the understory

as well. We selected a thicket that was 30 9 290 m and

adjacent to an agricultural field. Five individual plants were

selected for field measurements and followed throughout

the day. For laboratory measurements, saplings of E. um-

bellata were collected from the study area, transplanted

into 2-L plastic pots and grown for 3 months in an envi-

ronmental chamber before experimentation. Saplings were

*40 cm tall during experimentation. Leaves of plants

grown in the lab were morphologically similar to adult

plants in the field, including leaf size, thickness and with

sparse stellate trichomes on adaxial surfaces, and dense

peltate trichomes on abaxial surfaces.

Field measurements

Monthly measurements of stomatal conductance, net pho-

tosynthesis, leaf fluorescence, leaf xylem pressure poten-

tial, and leaf reflectance were collected every 60–90 min

on sunny days (900–1,600) on the fourth or fifth fully

expanded sunlit leaf of individual E. umbellata shrubs

(n = 5). The same leaves were used for all measurements

at a specific time. Leaves were not repetitively measured

throughout the day due to destructive sampling for xylem

pressure potential measurements. Incident photosynthetic

photon flux density (PPFD), stomatal conductance (gs), leaf

net photosynthesis (An) and light-adapted measurements of

chlorophyll fluorescence were measured using a portable

infrared gas analyzer with a pulse amplitude-modulated

leaf chamber fluorometer (LI- 6400, LI-COR, Inc. Lincoln,

NE). The relationship between maximal fluorescence in a

light-adapted leaf after a saturating pulse of light (F0m) and

steady-state fluorescence prior to any saturating pulse (Fs)

was used to estimate the effective quantum yield of pho-

tosystem II:

DF=F0m ¼ F0m � Fs

� �
=F0m
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Leaf xylem pressure potentials (W) were quantified with a

Scholander pressure chamber (Model 650, PMS, Corvallis,

OR). Midday measurements of gs, An, and W were made on

nearby Quercus alba plants from June to August for

comparison of physiological measurements to a native

species.

Leaf and canopy spectral reflectance (350–2,500 nm)

were measured using an ASD FieldSpec Pro Full Range

reflectance spectrometer (Analytical Spectral Devices,

Inc., Boulder, CO). The ASD spectral resolution is *1–

3 nm from the visible to the short-wave infrared. The

fore-optic of the spectrometer was held from a tall pole

in a nadir position at a distance *1 m above the canopy

using an 8� field-of-view on a cloudless day. To acquire

a representative value, multiple spectra were collected

and averaged for each canopy. Data were reduced from

binary using the manufacturer’s software. A NIST

spectralon reflectance standard was used as a white ref-

erence to optimize instrument gains prior to each canopy

measurement. This standard provides a near 100% lam-

bertian reflectance surface for calibration. Using the

resulting reflectance values, several canopy reflectance

indices were calculated. Concurrent measurements of

DF/F0m were made on 50 leaves at each site with a

pulse amplitude-modulated leaf chamber fluorometer

(LI- 6400, LI-COR, Inc., Lincoln, NE) to represent

canopy fluorescence.

Laboratory measurements

Elaeagnus umbellata saplings were grown in a Conviron

environmental chamber (CMP 3244, Controlled Environ-

ments Limited, Asheville, NC) under a PPFD of approxi-

mately 700 lmol m-2 s-1, 48% relative humidity, a

photoperiod of 14 h, and a day/night temperature of 30/

25�C. Drought stress was induced by withholding watering

from treatment plants for 8 days (at which point all plants

had wilted and stomata had closed) followed by a recovery

period in which treatment plants received water until soils

were saturated (measurements made on days 9 and 11).

Responses of drought-treated plants were compared to

well-watered control plants.

Plant responses to drought were quantified by measuring

stomatal conductance to water vapor (gs), leaf net photo-

synthesis (An), light-adapted fluorescence (DF/F0m), and

plant reflectance using the aforementioned instruments

(n = 5). Measurements were conducted midday (1,100–

1,300 h) on days 1, 4, 6, and 8 for drought experiments,

and days 9 and 11 during the recovery. Measurements of

xylem pressure potential were made only on days 8, 9, and

11 due to destructive sampling.

Statistical analysis

For field experiments, two-way analysis of variance

(ANOVA) was used to test for significant interactions

between month and time for stomatal conductance, pho-

tosynthesis, chlorophyll fluorescence, xylem pressure

potential, and reflectance indices (Zar 1999). Significant

differences among months were identified with Tukey post

hoc tests (a = 0.05). In cases where a significant interac-

tion occurred, one-way ANOVAs were used to test for

variations among months at specific times.

Variations in photosynthetic characteristics, stomatal

conductance, fluorescence, and reflectance indices relative

to control plants over time were analyzed with repeated

measures ANOVA for the drought stress experiment (Zar

1999). Day was specified as the repeated factor (within-

subject), and treatment as fixed effect (between-subjects).

The validity of a within-subjects test depends on sphericity

of the data (Von Ende 1993). A measure of deviation that

addresses this assumption, the Huynh–Feldt (H–F) cor-

rection (Huynh and Feldt 1976), was calculated and

adjusted P values (H–F P) were reported. Dunnett’s tests

(a = 0.05) were used to identify significant differences in

treatment means from controls for individual days. All

statistical analyses performed using SAS 9.1 software (SAS

Institute, Inc.).

Results

Field physiological measurements

Air temperatures were averaged throughout the growing

season with average maximum highs reaching 30�C in June

and July. Although precipitation for May through August

2008 was approximately equal to the 30-year average

(398 mm), precipitation for May and June was 56% above

the average for those 2 months. Precipitation for July and

August was 52% below the average (Fig. 1). Precipitation

in August was 78% below the monthly average. Water

stress during these months was evidenced by the physio-

logical response of E. umbellata. Xylem pressure potentials

were significantly lower in July and August (F = 36.56,

P \ 0.0001; Fig. 2). Maximum daily values in these

months were lower than the lowest values experienced

earlier in the season. By August, xylem pressure potential

was as low as -2.1 MPa (Fig. 2).

Stomatal conductance also significantly decreased as the

season progressed with the lowest daily values experienced

in August (F = 18.24, P \ 0.0001; Fig. 2). There was a

significant interaction between month and time of day

(F = 6.16, P \ 0.0001). Stomata opened earlier in the day

during June, with significantly higher rates at 900 and
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1,000 (F = 6.78, P = 0.0037 and F = 6.96, P = 0.0033,

respectively). Photosynthetic rates were highest in June and

lowest in both May and August over the course of the day

(F = 67.68, P \ 0.0001; Fig. 2). There was a significant

interaction between time of day and month (F = 24.49,

P \ 0.0001). Analysis of assimilation rates at specific

times revealed that photosynthesis was significantly lower

in August only at 1100 (F = 182.31, P \ 0.0001) and rates

at 1,000 were significantly higher during June and August

(F = 28.12, P \ 0.0001).

Monthly comparisons of midday physiological mea-

surements were made on nearby Q. alba trees. During June

there were no statistical differences between species in

stomatal conductance or photosynthesis (F = 0.01,

P = 0.9110; F = 0.85, P = 0.3690; respectively; Fig. 3).

Stomatal conductance values did not differ in July and

August for Q. alba plants relative to E. umbellata

(F = 0.02, P = 0.8998; F = 3.74, P = 0.0869), but pho-

tosynthesis during both months was significantly lower in

Q. alba (July F = 38.95, P \ 0 .0001; August F = 6.21,

P = 0.0227; Fig. 3). Xylem pressure potentials were sig-

nificantly lower during June and July for Q. alba plants

(F = 6.63, P = 0.0191, F = 36.13, P \ 0.0001), but there

was no difference in August between species (F = 3.44,

P = 0.0799; Fig. 3).

Daily time courses of incident PPFD ranged from 1,100

to 1,600 lmol m-2 s-1 over the course of measurements

(Fig. 4). From May to July, DF/F0m followed the diurnal

variations in PPFD, but this pattern was not seen during

August (Fig. 4). DF/F0m was highest in June and lowest in

May (F = 6.90, P = 0.0003; Fig. 4). There was a signifi-

cant interaction between month and time of day (F = 4.22,

P \ 0.0001). Diurnal variations in DF/F0m were relatively

similar during the first 3 months, with higher values

occurring during the morning and late afternoon. By

August this pattern had dramatically changed. During

August, DF/F0m was significantly lower at 900 (F = 3.91,

P = 0.0286) and significantly higher than the other months

at 1230 (F = 3.5, P = 0.04) and remained high throughout

the rest of the afternoon (Fig. 4). Leaf trichome densities

(n = 10) were higher on the abaxial surface 35 ± 2 rela-

tive to the adaxial surface 16 ± 2.

Values of PRI were highest during August and lowest

during May (F = 16.01, P \ 0.0001; Fig. 4). There was a

significant interaction between time of day and month

(F = 2.54, P = 0.0032). Diurnal variations in PRI chan-

ged with month, with lowest values occurring at different

times of the day. PRI reached low values at midday,

between the hours of 1230–1400 (F = 8.93, P = 0.0010,

F = 4.87, P = 0.0136, respectively) with the lowest levels

occurring in May and June. Interestingly, PRI values

remained high during August throughout the course of the

day despite evidence of water stress. There were significant

relationships between DF/F0m and PRI during May

(F = 33.86, P \ 0.0001, r2 = 0.57), June (F = 85.93,

P \ 0.0001, r2 = 0.75), and July (F = 28.14, P \ 0.0001,

r2 = 0.55). In contrast, there was no relationship between

the two parameters during August (F = 1.29, P = 0.2654,

r2 = 0.04; Fig. 5).

Laboratory physiological measurements

Significant reductions in physiological parameters of

drought-treated plants were observed in E. umbellata. Sig-

nificant day 9 treatment interactions were observed in sto-

matal conductance (F = 12.49, P \ 0.0001) and

photosynthesis (F = 15.45, P \ 0.0001) in response to

drought. Control and treatment plants differed significantly

by day 6 for both physiological parameters (Fig. 6). Visible

signs of stress were also observed on day 6 of drought

treatment in some E. umbellata plants. By day 8, all drought-

treated plants showed signs of stress as evidenced by extremely

wilted leaves and essentially closed stomata (14 ± 5 mmol

H2O m-2 s-1). Additionally, xylem pressure potentials

were significantly lower by day 8 in drought-treated plants
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(-3.68 ± 0.53 MPa) relative to controls (-1.26 ± 0.05

MPa; F = 20.62, P = 0.0019). By day 9 (1 day after recov-

ery), xylem pressure potentials were beginning to recover

(-1.68 ± 0.16 MPa), and by day 11 there was no difference

between drought and control plants (F = 1.18, P = 0.1097).

A significant day 9 treatment interaction for DF/F0m
(F = 6.83, P \ 0.0001) was also seen (Fig. 6). Drought-

stressed plants had significantly lower DF/F0m values by day 6

of the experiment (0.42 ± 0.03) compared to control plants

(0.53 ± 0.03), which occurred on the same day as visible signs

of stress. By day 8, DF/F0m values reached 0.35 ± 0.04. There

were no significant changes in PRI between control and

drought-treated plants throughout the experiment (F = 0.26,

P = 0.9037), and no significant day 9 treatment interaction

(F = 0.41, P = 0.8370; Fig. 6). There was also no significant

relationship between PRI and DF/F0m (F = 0.10, P = 0.75,

r2 = 0.001; Fig. 7).

During the recovery period, stomatal conductance

remained significantly lower than control plants; however,

photosynthetic rates of drought-treated plants reached

control levels by the first day of recovery. DF/F0m values

also recovered to control values by the first day (Fig. 6).

Discussion

Elaeagnus umbellata is a drought-tolerant plant that can

maintain some degree of photosynthesis even during

times of water stress. During July and August, xylem

pressure potentials reached values lower than -2.0 MPa

while remaining photosynthetically active. Stomata

opened earlier in the day and reached maximum rates

before noon throughout the summer. Similar stomatal

conductance responses were observed throughout the

course of a day in E. angustifolia growing at the edge of

the Linze Oasis in the HeXi corridor of northern China

(Gong et al. 2006). Maximum net photosynthesis also

occurred early in the day, with significantly lower rates in

the afternoon. Despite lower stomatal conductance and

xylem pressure potentials during August, high photosyn-

thetic rates were still observed in the morning and some

level of photosynthesis was maintained throughout the

afternoon. Photosynthetic rates measured in our study are

as high as those reported in E. angustifolia (Gong et al.

2006) and higher than those reported in E. umbellata

seedlings (Côté et al. 1988). Relative to nearby Quercus

alba plants, E. umbellata was able to reach maximum

photosynthetic rates with lower stomatal conductance and

higher xylem pressure potentials. The ability to maximize

carbon assimilation even during times of water stress

confers an obvious advantage to E. umbellata and con-

tributes to its overall invasive potential.

The structural morphology of E. umbellata allows for

survival in semiarid environments (Klich 2000) and may

play a role in the enhancement of photosynthesis during

times of water stress. Sun-exposed leaves of E. umbellata

possessed trichomes on both leaf surfaces throughout the

growing season, with the abaxial side always more
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pubescent. This is often considered to be an adaptive trait

in xeric environments (Ehleringer and Björkman 1978) and

also characteristic of the related invasive species, E. an-

gustifolia (Klich 2000). Trichomes can function to protect

leaves during times of stress in multiple ways. Leaf

absorptance is reduced by pubescence by enhancing

reflectance (Ehleringer et al. 1976), thereby reducing the

stress of a high light environment. The presence of tric-

homes allows plants to avoid lethal leaf temperatures

during hot summer months and allows leaves to maintain

near optimal temperatures for photosynthesis (Ehleringer

and Mooney 1978; Ehleringer 1982).

Interestingly, E. umbellata possesses many shade-like

characteristics that enhance photosynthesis and light cap-

ture throughout the growing season and enable plants to

maintain high photosynthetic rates while reducing the light

load in a high light environment. Because the abaxial side

of a leaf is more pubescent than the adaxial, this dense

pubescent layer causes the abaxial surface to be lighter in

color, acting as a reflective surface to enhance light capture

by reflecting the light back in, while avoiding the effects of

high light due to the presence of adaxial trichomes (Klich

2000). Light is also reflected back toward leaves positioned

toward the interior of the canopy. Morales et al. (2002)

found the presence of trichomes to act as a protective light-

filtering mechanism for sun leaves of Q. ilex susbsp. Bal-

lota. The structural architecture of E. umbellata is very

similar to plants in shaded environments. Leaves are

positioned facing south and leaf angles are horizontal to

maximize sunlight capture (Brantley and Young 2009).

Earlier in the season, DF/F0m followed expected diurnal

changes (Bellot et al. 2004) and PRI tracked changes in

DF/F0m as seen in the significant linear relationships during

May, June, and July. By August, when the plants showed

physiological signs of water stress in stomatal conductance

and xylem pressure potential values, DF/F0m did not follow

diurnal variations in PPFD and there was no relationship

between DF/F0m and PRI. During the drought experiments,

physiological parameters were significantly lower in

drought-treated plants by day 6 of the experiment, and

xylem pressure potentials reached values lower than those

experienced in field studies. DF/F0m also declined by day 6

due to water stress. After re-watering, stomatal conduc-

tance values remained lower than controls; however, pho-

tosynthesis and DF/F0m recovered by the next day and were

not significantly different from controls for the remainder

of the experiment, even though xylem pressure potentials

had not reached control levels. This is similar to responses

seen in the field during August. PRI did not differ signifi-

cantly between control and drought-treated plants at any

time during the experiment and there was no relationship

between PRI and DF/F0m for drought-treated plants, indi-

cating that xanthophyll pigment changes are not responsi-

ble for photoprotection of photosystem II during drought

conditions. Zhao et al. (2007) found that E. angustifolia

plants under water stress did not dissipate excess energy

through the increase in the pool size of xanthophyll cycle

components, as has been reported for many species

(Chaves et al. 2002). Instead, as water stress increased, the

reversible inactivation of partial PSII reaction centers

played an important role in photoprotection (Zhao et al.

2007). Furthermore, the presence of trichomes has been

found to decrease the need for xanthophyll-based photo-

protection in the short term (Morales et al. 2002). Our

research supports the view that xanthophyll cycle
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dissipation is not the photoprotective mechanism at work

for Elaeagnus species under water stress.

In summary, E. umbellata has many characteristics that

enable high photosynthetic rates even during times of

stress, determined in both field and lab studies. This

mechanism contributes to the ability to be a successful

invader. The presence of trichomes provides a highly

reflective surface to avoid excess light energy, while

canopy structure is similar to those of shade plants,

allowing for maximum light capture. In laboratory studies,

∆ F
/F

' m

0.40
0.42
0.44

0.46
0.48
0.50

800 1000 1200 1400 1600

P
R

I

-0.10

-0.08

-0.06

-0.04

-0.02

∆
F

/F
'm

0.38
0.40
0.42
0.44
0.46
0.48
0.50

1000 1200 1400 1600 1000 1200 1400 1600

Time (h)
1000 1200 1400 1600 1800

P
R

I

-0.10

-0.08

-0.06

-0.04

-0.02

May 19

May 19

June 12

June 12

July 17

July 17

August 20

August 20

P
P

F
D

 (
µm

ol
 m

-2
 s

-1
)

1100
1200
1300

1400
1500
1600
1700 P
P

F
D

 (µm
ol m

-2 s
-1)1100

1200
1300
1400
1500
1600
1700

21 enuJ91 yaM July 17 August 20

Fig. 4 Monthly variations in incident PPFD, DF/F0m, and PRI. Values represent mean ± 1 standard error

-0.12

-0.08

-0.04

0.00

P
R

I-0.12

-0.08

-0.04

0.00

0.30 0.35 0.40 0.45 0.50 0.55 0.60

P
R

I

-0.12

-0.08

-0.04

0.00

∆F/F'm

. 0.35 0.40 0.45 0.50 0.55 0.60
-0.12

-0.08

-0.04

0.00

r2 = 0.57

May

r2 = 0.75

r2 = 0.55 r2 = 0.04

June

July August

Fig. 5 Monthly relationships between PRI and DF/F0m from field measurements

Trees (2010) 24:237–245 243

123



E. umbellata was able to recover from drought treatment

quickly and maintain high levels of photosynthesis after re-

hydration. Relative to nearby native plants, E. umbellata

was able to maintain a higher rate of photosynthesis with

higher xylem pressure potentials. PRI was not effective at

tracking changes in DF/F0m during water stress in both field

and laboratory studies. Future studies are needed to

determine if trichome density changes throughout the

summer, and if this has an effect on PRI as suggested by

Levizou et al. (2005). However, our results provide further

evidence that Elaeagnus species use other energy dissipa-

tive mechanisms for protection of the photosystem. All of

these physiological and morphological characteristics

enhance the invasive success of E. umbellata and enable

invasion of areas where water availability may limit other

species.
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